

A Competitive Approach for Online Price Prediction Comparison Among Regression-Based, Tree-Based and Ensemble Models

Abstract

Two-Day Conference, Nov. 5 & 6

This study aims at providing precise price prediction decision-support to help vendors decide prices for items they sell online. It can be challenging to know how much a product is worth, and product attributes can lead to significant price differences. This solution provides a cross-validated empirical-based price estimate for a product, rather than a subjective estimate. Using RStudio, we performed text mining to create model features, machine learning methods to predict price, and demonstrate how under-and-over forecasting price impacts key business KPIs. We discuss the impacts of using these models based on both statistical and business performance measures.

Introduction

Having a decision-support tool that could provide vendors precise pricing suggestions on C2C selling platforms would be very advantageous, especially for firms that compete on price. More precise and efficient pricing could help them attract more customers, as well as maximize their margin.

This project explores the **importance of accurate pricing**, which is important for online retailers. When the forecasted price is higher than actual, the customers will go to other websites, which leads to lost sales. If the forecast price is lower than optimal, the company will suffer from lost margin. This project aims at providing optimized prediction and keeping the lost business and margin lost in control.

Assumptions:

- \succ The price offered in the dataset was indeed the optimal price.
- \succ An over forecast by ε % will lead to **lost sales** (will go to a competitor).
- > An under forecast leads to **lost margin**.

Research Questions:

- \rightarrow How can one use textual product features to accurately price a product?
- > How do machine learning models (Regression-Based and Tree-Based) models; LASSO, Random Forest, XGBoost and Ensemble models) perform at predicting price when using textual-derived features?
- > How does the business performance (e.g. margin, lost sales) change with changes in model accuracy?

Literature Review

We researched studies on 1) Price Prediction, 2) Text Mining, and 3) Machine Learning models, including regression-based and tree based models

Learning models, moldaling regression based and the based models.							
Linear Regression	Decision Tree	LASSO	Random Forest	XGBoost	Neural Network	SVM	Ensemble Model
-Numerical data with lots of features	- classification - Medical diagnosis - Credit risk analysis	-regression based -high dimension or overfitting	-Tree based -High dimension -Feature importance	-Tree based -High dimension -parallel computation	 Images Video "Human- intelligence" type tasks like driving or flying Robotics 	 Classifying proteins Text classification Image classification Handwriting recognition 	-Better prediction -More stable mode
Х	Х	Х	X	Х			Х

Table 1. Literature review summary by method used

The novelty of this study lies in how we 1) compared regression- and treebased machine learning models using textual features for price prediction; and 2) demonstrate the effects using each model would have on business KPIs. Too often this crucial step is missed in connecting the models to the business.

Yuntong Lin, Fan Lu, Shengye Guo, Matthew A. Lanham Purdue University Krannert School of Management

lin1053@purdue.edu; lu714@purdue.edu; guo506@purdue.edu; lanhamm@purdue.edu

Methodology

Figure 1 outlines our study design, starting from data cleaning, data preprocessing, feature creation and selection, model selection, cross-validation design, and model assessment measures.

Figure 1. Study Design

Data (Source: Mercari Kaggle competition)

Target feature: Price; categorical features included: shipping and condition Textual features: name, category name, brand name, description

■ EDA, Data Cleaning & Pre-Processing

Regression Based Models

1.Using N-gram (uni-gram, bi-gram, tri-gram) for <u>'Item Description';</u> Uni-gram for 'Brand Name', select top 20 most used grams and create dummy variables.

2.Detect size, color, usage condition, material, etc. information in '<u>Item</u> Description' and create dummies from this extra description information.

Figure 2. Word cloud of 'Item Description'

Figure 3,4,5 Top 20 most used grams using Uni-, bi-, tri-gram

3.Split '<u>Category</u>' into 'general category', 'subcategory1' and 'subcategory2'. created 9, 12, and 7 dummies for each respectively.

Around 160 subcategory1 account for 90% of all subcategory2.

Rank of low-level category Figure 6,7. Cumulative proportion of items of subcategory 1 and 2. 4. Create dummies for 'Condition' (1 to 5).

> Tree Based Models

1.Changed textual features (eg: name, brand, general category, subcategory1 subcategory2) into numeric features.

2.Merge with processed 'Item Description'.

Model Design

Data was partitioned into a 70-30% train-test set, and 5-fold cross-validation was used to evaluate and compare models, and reduce overfitting.

Methodology (Approach) Selection

- Regression Based: LASSO, Random Forest, XGBoost, Ensemble Model.
- 2. Tree Based: Random Forest, XGBoost, Ensemble Model.

After changing to tree-based models, RMSLE drops greatly from 0.66 to 0.15, which indicates that tree-based models perform better in this situation. This low RMSLE of tree-based models is due to the smaller-size dataset. RMSLE will get greater when the size grows, and we estimate that it will increase to around 0.5. We observed, treebased models are time-consuming and highly demanding on our systems memory.

After comparison among several models, we found ensemble model always has better performance (better prediction & more stable) than others.

Business Evaluation

Future Studies

Business Information and Analytics Center

Results: Model Evaluation and Business Insight

Model Evaluation Measures

The predictive models were evaluated on RMSLE, which represents the test set error of each model.

Reg-Based Models	Set	RMSLE value	
LASSO	Train	0.6797616	
LASSO	Test	0.6856457	
Dandom Forast	Train	0.6292667	
Kandom Porest	Test	0.6659648	
VCPoost	Train	0.6582971	
AUDOOSI	Test	0.6683317	
Encemble	Train	0.6407201	
L'IISEIIIDIE	Test √	0.6630945	

		-	
Tree-Based Models	Set	RMSLE value	
Dandom Forast	Train	0.1468371	
Kanuonii Forest	Test	0.1583948	
VCPoost	Train	0.1575847	
AUDOOSI	Test	0.1591974	
Encomble	Train	0.1502433	
Liiseindie	Test √	0.1569239	

 Table 2. Comparison of Regression-Based Models
 Table 3. Comparison of Tree-Based Models

Figure 8, 9. Lost Business and Margin Lost of Each Model

Table 4. Lost Business and Margin Lost

The ensemble model led to the lowest margin lost (tends to under forecast the least), and XGB tended to lead to the best possible model to reduce lost sales.

Conclusions

This study aims at seeking optimized solutions for efficiently and precisely prediction price for online retailers, as motivated by the Mercari competition.

Business Recommendation

> Our model could provide precise pricing predictions, which not only reduces the risk of pricing higher than actual and leading to lost business, but also reduces the risk of pricing lower and leading to lost margins.

While the ensemble model could keep margin lost lower than \$50,000 and has the best test set RMSLE (0.1569), the firm might be more concerned with reducing lost sales, thus the XGB should be used. The difference in statistical performance compared to the ensemble model is insignificant (0.1591 vs. 0.1569).

Important Findings in Methodology

When a categorical feature has too many levels, we can transfer the categorical values into nominal features and use tree-based models. Tree-based models could greatly reduce the error of prediction.

Latent Dirichlet Analysis to improve analysis on 'Item Description'; Include more keywords into models to improve the accuracy.

Decision Support Tool Prototype

Link to a video demonstration of an R-Shiny prototype for this solution.